

Andrew Godwin
Hi, I'm

Django core developer

Senior Software Engineer at

Used to complain about migrations a lot

It's magic.

It's magic.

The Problem1

The Web is changing.

WebSockets

WebSockets

WebRTC

Long-polling

MQTT

Server-Sent Events

Python is synchronous.

Django is synchronous.

Synchronous code is easier to write.

Single-process async is not enough.

Proven design pattern

Not too hard to reason about

What could fit these constraints?

Loose Coupling2

Not too tied to WebSockets

Not too tied to Django

Well-defined, minimal interfaces

Easy to swap out or rewrite

The Message Bus

HTTP
Server

Message Bus

WSock
Server

Django
Project

What do you send?

How do you send it?

ASGI

nonblocking send

blocking receive

add to group

discard from group

send to group

JSON-compatible,

dictionary-based

messages onto

named channels

Concrete Ideas3

Develop using concrete examples

WebSocket

connect

receive

disconnect

accept/reject

send

WebSocket

websocket.connect

websocket.send!abc1234

websocket.receive

websocket.disconnect

At-most-once

First In First Out

Backpressure via capacity

Not sticky

No guaranteed ordering

No serial processing

HTTP
& WS

Channel Layer

Django
Worker

HTTP
& WS

Django
Worker

Django
Worker

Django
Worker

{
 "text": "Hello, world!",
 "path": "/chat/socket/",
 "reply_channel": "websocket.send!9m12in2p",
}

Developed and spec'd

HTTP WebSocket

Rough drafts

IRC Email Slack

Please, no.

Minecraft Mainframe Terminal

{
 "reply_channel": "http.response!g23vD2x5",
 "method": "GET",
 "http_version": "2",
 "path": "/chat/socket/",
 "query_string": "foo=bar",
 "headers": [["cookie", "abcdef..."]],
}

At-most-once

First In First Out

Backpressure via capacity

Not sticky

No guaranteed ordering

No serial processing

At-most-once

First In First Out

Backpressure via capacity

Not sticky

No guaranteed ordering

No serial processing

"order" key on receive messages

Connection acceptance

Daphne
HTTP/WebSocket Server

Channels
Django integration

asgi-redis
Redis backend

asgi-ipc
Local memory backend

asgiref
Shared code and libs

Django-ish4

It can take several tries

to get a nice API.

Consumers based on Views

Callable that takes an object

Decorators for functionality

Class-based generics

@channel_session
def chat_receive(message):
 name = message.channel_session["name"]
 message.reply_channel.send({"text": "OK"})
 Group("chat").send({
 "text": "%s: %s" % (name, message["text"]),
 })
 Message.objects.create(
 name=name,
 content=message["text"],
)

Routing based on URLs

List of regex-based matches

Includes with prefix stripping on paths

More standardised interface

routing = [
 route(
 "websocket.receive",
 consumers.chat_receive,
 path=r"^/chat/socket/$",
),
 include("stats.routing", path="^/stats/"),
 route_class(ConsumerClass, path="^/v1/"),
]

Sessions are the only state

Sessions hang off reply channels not cookies

Uses same sessions backends

Available on the consumer's argument

Can also access long-term cookie sessions

@enforce_ordering
def receive_consumer(message):
 Log.objects.create(...)

session = session_for_reply_channel(
 message.reply_channel.name
)
if not session.exists(session.session_key):
 try:
 session.save(must_create=True)
 except CreateError:
 # Session wasn't unique
 raise ConsumeLater()
message.channel_session = session

No Middleware

New-style middleware half works

No ability to capture sends

Decorators replace most cases

View/HTTP Django still there

Can intermingle or just use one type

View system is just a consumer now

def view_consumer(message):
 replies = AsgiHandler()(message)
 for reply in replies:
 while True:
 try:
 message.reply_channel.send(reply)
 except ChannelFull:
 time.sleep(0.05)
 else:
 break

Signals and commands

runserver works as expected

Signals for handling lifecycle

staticfiles configured for development

Beyond5

Generalised async communication

Service messaging

Security/CPU separation

Sync & Async / Py2 & Py3

Diversity of implementations

More web servers

More channel layers

More optimisation

More efficient bulk sends

Less network traffic on receive

More maintainers

More viewpoints, more time

1.0 coming soon

Stable APIs for everything except binding

Thanks.

Andrew Godwin
@andrewgodwin

channels.readthedocs.io

github.com/andrewgodwin/channels-examples

